Indian Statistical Institute

A Three-Stage Elimination Type Procedure for Selecting the Largest Normal Mean (Common Unknown Variance)
Author(s): Ajit C. Tamhane
Source: Sankhyā: The Indian Journal of Statistics, Series B, Vol. 38, No. 4 (Nov., 1976), pp. 339-349
Published by: Indian Statistical Institute
Stable URL: http://www.jstor.org/stable/25052033
Accessed: 21/10/2010 18:26

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=indstatinst.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Indian Statistical Institute is collaborating with JSTOR to digitize, preserve and extend access to Sankhy: The Indian Journal of Statistics, Series B.

A THREE-STAGE ELIMINATION TYPE PROCEDURE FOR SELECTING THE LARGEST NORMAL MEAN (COMMON UNKNOWN VARIANCE)*

By AJIT C. TAMHANE
Northwestern University, Evanston, Illinois

SUMMARY. The problem of selecting the population with the largest mean from several normal populations having a common unknown variance is considered in the context of the indifference-zone approach. A three-stage elimination type procedure is developed. For the choice of the design constants cf the procedure a minimax criterion is proposed. A table of design constants is provided which can be implemented in practice. Monte Carlo sampling results are given to compare the performance of our procedure with the two-stage nonelimination type procedure of Bechhofer, Dunnett and Sobel (1954).

1. Introduction

Let $\Pi_{i}(1 \leqslant i \leqslant k)$ be $k \geqslant 2$ normal populations with means μ_{i} and a common unknown variance σ^{2}. Let $\boldsymbol{\mu}=\left(\mu_{[1]}, \ldots, \mu_{[k]}\right)^{\prime}$ where $\mu_{[1]} \leqslant \ldots \leqslant \mu_{[k]}$ denote the ordered means; we assume no prior knowledge concerning the correct pairing between Π_{i} and $\mu_{[j)}(1 \leqslant i, j \leqslant k)$. The experimenter's goal is to select the "best" population which is defined to be the population having the largest mean $\mu_{[k]}$; such a selection is referred to as a correct selection (CS). According to the usual indifference-zone approach we assume that the experimenter restricts consideration to only those procedures R which guarantee the probability requirement

$$
P_{\mu, \sigma}(\mathrm{CS} \mid R) \geqslant P^{*} \text { whenever } \mu_{[k]}-\mu_{[k-1]} \geqslant \delta^{*},
$$

where $P^{*}\left(1 / k<P^{*}<1\right)$ and $\delta^{*}>0$ are preassigned constants.
It is known (see Dudewicz, 1971) that a single-stage procedure, which guarantees a specified probability requirement, does not exist for this problem. Bechhofer, Dunnett and Sobel (1954) proposed a two-stage procedure R_{2} in which the first stage outcome is only used to obtain an estimate of σ^{2} and not used to eliminate the "noncontending" populations. We refer to R_{2} as a nonelimination type procedure.

In many practical situations, viz., drug testing, the number of populations under study is often very large. Therefore a procedure incorporating a

[^0]preliminary screening stage to eliminate the noncontending populations from further sampling would be desirable. Paulson (1964) has given such a sequential elimination type procedure for the above selection problem. But sequential experiments become impractical when the time period that must elapse between the successive stages of the experiment is large, viz., agricultural field trials. Therefore what appears to be needed is a two or a three-stage procedure having the desirable elimination feature. The present paper is devoted to the development of such a elimination type procedure. We point out that a two-stage elimination type procedure for the above problem when σ^{2} is known has been analyzed by Alam (1970) and Tamhane and Bechhofer (1977).

2. The proposed three-stage procedore R_{3}

In the procedure to be proposed below all populations are sampled in the first two stages; the first stage outcome is used to obtain a preliminary estimate of the unknown σ^{2} and the cumulative outcome from the first two stages is used to eliminate the possible noncontenders. The selection of the "best" population is made at the end of the third stage. The rule used for retaining the "contending" populations at the end of the second stage is of the type proposed by Gupta (1965) for his subset selection problem. We remark here that a two-stage elimination type procedure was developed by us but was found to be less efficient in the Monte Carlo (MC) sampling studies; the interested reader may refer to Tamhane (1975) for further details.

Following are the steps in procedure R_{3}. (1) Take $n_{1} \geqslant 2$ independent observations $X_{i j}\left(1 \leqslant j \leqslant n_{1}\right)$ from each Π_{i} and compute the sample means $\bar{X}_{i}^{(1)}(1 \leqslant i \leqslant k)$ and a pooled estimate of the variance $S_{1}^{2}=\sum_{i=1}^{k} \sum_{j=1}^{n_{1}}\left(X_{i j}-\bar{X}_{i}^{(1)}\right)^{2} /$ $k\left(n_{1}-1\right)$. (2) Take additional $\left(N_{2}-n_{1}\right)$ independent observations $X_{i j}$ from each $\Pi_{i}\left(1 \leqslant i \leqslant k, n_{1}+1 \leqslant j \leqslant N_{2}\right)$ where

$$
\begin{equation*}
N_{2}=\max \left\{n_{1},\left[2\left(\frac{S_{1} h_{1}}{\delta^{*}}\right)^{2}\right]\right\} \tag{2.1}
\end{equation*}
$$

In (2.1), $h_{1}>0$ is a constant defined in (2.3) below and $[x]$ is the smallest integer $\geqslant x$. Compute the cumulative sample means $X_{i}^{(1)}$, and a two-stage pooled estimate of the variance $S_{2}^{2}=\sum_{i=1}^{k} \sum_{j=1}^{N_{2}}\left(X_{i j}-\bar{X}_{i}^{(2)}\right)^{2} / k\left(N_{2}-1\right)$. Select a subset I of populations where Π_{i} enters the subset iff $\bar{X}_{i}^{(2)} \geqslant \max _{1 \leqslant j \leqslant k} \bar{X}_{j}^{(2)}$ $-\lambda S_{1}\left(2 / N_{2}\right)^{\frac{1}{2}}$ and where $\lambda>0$ is a constant defined in (2.3) below. If I consists of a single population stop sampling and assert that, that population is best. (3) If I consists of more than one population
then take $N_{3}-N_{2}$ additional independent observations $X_{i j}\left(N_{2}+1 \leqslant j \leqslant N_{3}\right)$ for $i \epsilon I$ where

$$
\begin{equation*}
N_{3}=\max \left\{N_{2},\left[2\left(\frac{S_{2} h_{2}}{\delta^{*}}\right)^{2}\right]\right\}, \tag{2.2}
\end{equation*}
$$

and $h_{2}=h_{2}\left(N_{2}\right)>0$ is defined in (2.4) below. Compute the cumulative sample means $\bar{X}_{i}^{(3)}$ and assert that $\max _{i \in I} \bar{X}_{i}^{(3)}$ is best.

We now show how to choose $h_{1}, h_{2}\left(N_{2}\right)$, and λ to guarantee (1.1). In the following, $F_{v, p}(x ;\{\rho\})$ denotes the c.d.f. at the equicoordinate point x of a p-variate central t-distribution with v degrees of freedom (d.f.) and having a common correlation $=\rho$.

Proposition 2.1: If $h_{1}>0$ and $\lambda>0$ are chosen to satisfy

$$
\begin{equation*}
F_{k\left(n_{1}-1\right), k-1}\left(h_{1}+\lambda ;\{1 / 2\}\right)=\beta_{1}, \tag{2.3}
\end{equation*}
$$

and having observed $N_{2}=n_{2}$ in (2.1), $h_{2}=h_{2}\left(n_{2}\right)>0$ is chosen to satisfy

$$
\begin{equation*}
F_{k\left(n_{2}-1\right), k-1}\left(h_{2} ;\{1 / 2\}\right)=\beta_{2}, \tag{2.4}
\end{equation*}
$$

where β_{1} and β_{2} are preassigned constants such that $P^{*}<\beta_{1}, \beta_{2}<1$, and

$$
\begin{equation*}
\beta_{1}+\beta_{2}-1=P^{*}, \tag{2.5}
\end{equation*}
$$

then R_{3} guarantees (1.1).
Proof: See the Appendix.

3. A choice of design constants for \boldsymbol{R}_{3}

In R_{3} we can regard n_{1}, h_{1}, λ (and thus β_{1}) and β_{2} as design constants. Note that we do not regard h_{2} as a design constant since it is a random variable whose values depend on β_{2} and N_{2}. Since an infinite number of combinations of design constants can guarantee (1.1), to make a choice among these we propose to use the criterion of minimizing the maximum (w.r.t. μ for fixed σ^{2}) of the expected total sample size. We refer to this as the minimax criterion.

Let N denote the total sample size associated with $R_{3}, N=k N_{2}$ $+T\left(N_{3}-N_{2}\right)$, where T denotes the size of the subset retained by R_{3} for sampling in the third stage. In an unabridged version of this paper, which is available from the author, we have derived an expression for $E_{\mu, \sigma}\left(N \mid R_{3}\right)$. We have also shown that for fixed $\sigma^{2}, \delta^{*}, k$, and for fixed values of design constants, $E_{\mu_{, \sigma}}\left(N \mid R_{3}\right)$ is maximized w.r.t. $\boldsymbol{\mu}$ at the equal means (EM-) configuration and if $\boldsymbol{\mu}$ is restricted to lie in the preference zone $=\left\{\boldsymbol{\mu} \mid \mu_{[k]}-\mu_{[k-1]} \geqslant \delta^{*}\right\}$ then $E_{\mu, \sigma}\left(N \mid R_{3}\right)$ is maximized at the slippage configuretion $\mu_{[1]}=\mu_{[k-1]}=\mu_{[k]}-\delta^{*}$ B4-6
(referred to as the least favorable (LF-) configuration hereafter). Therefore to determine the minimax choice of the design constants we have to minimize $E_{\mathrm{EM}, \sigma}\left(N \mid R_{3}\right)$ subject to conditions (2.3), (2.4) and (2.5). Not only is this optimization problem very difficult to solve but, more importantly, even if it can be solved on a computer, the solution of the optimization problem would depend on σ which is unknown to the experimenter. Therefore the solution would be of little use in practice.

To obviate some of these difficulties in deriving the minimax choice of the design constants we shall assume that n_{1} is chosen so that d.f. $=k\left(n_{1}-1\right)$ is sufficiently large and hence $S_{1}^{2}, S_{2}^{2} \rightarrow \sigma^{2}$ a.s. Then (2.3) and (2.4) become respectively,
and

$$
\begin{gather*}
\Phi_{k_{-1}}\left(h_{1}+\lambda ;\{1 / 2\}\right)=\beta_{1} \tag{3.1}\\
\Phi_{k-1}\left(h_{2} ;\{1 / 2\}\right)=\beta_{2}=1+P^{*}-\beta_{1}, \tag{3.2}
\end{gather*}
$$

where $\Phi_{p}(x ;\{\rho\})$ represents the c.d.f. value at the equicoordinate point x of a p-variate standard normal distribution with a common correlation $=\rho$. Further

$$
\begin{gather*}
E_{\mathrm{EM}, 0}\left(N \mid R_{3}\right) \cong 2 k\left(\frac{\sigma}{\delta^{*}}\right)^{2}\left[h_{1}^{2}+\left(h_{2}^{2}-h_{1}^{2}\right) \int_{-\infty}^{\infty}\left\{\Phi^{k-1}(x+\lambda \sqrt{ } 2)-\Phi^{k-1}\right.\right. \\
(x-\lambda \sqrt{ } 2)\} d \Phi(x)]+ \text { terms not involving } h_{1}, h_{2} \text { and } \lambda, \quad \ldots \tag{3.3}
\end{gather*}
$$

where $\Phi(\cdot)$ denotes the standard normal c.d.f. Thus approximately minimax values of h_{1}, λ and β_{2} (or equivalently h_{2}) can be obtained by minimizing (3.3) subject to (3.1) and (3.2). Notice that the solution to this optimization problem does not depend on σ and δ^{*} but depends only on k and P^{*}. We also point out that this optimization problem is the same as the one encountered in determining the minimax choice of the design constants for the conservative two-stage procedure for the known σ^{2} case (see Tamhane and Bechhofer, 1977) for which the solutions have already been tabulated for selected values of k and P^{*}. However, to implement these solutions in the case of unknown σ^{2} would require tables of the equicoordinate points of equicorrelated multivariate t-distribution with $\rho=1 / 2$ for arbitrary values of upper tail areas $\left(1-\beta_{1}\right)$ and $\left(1-\beta_{2}\right)$-not just the usual $10 \%, 5 \%, 2.5 \%$ and 1% areas. Such tables are not currently available.

To obviate the above difficulty we have to put an additional restriction (which leads to a suboptimal choice of the design constants) that $\beta_{1}=\beta_{2}$ $=\left(1+P^{*}\right) / 2$. This restriction allows us to construct tables of implementable
design constants for standard values of $P^{*}=0.90,0.95$ and 0.99 . Now by substituting $h_{2}=h_{1}+\lambda$ in (3.3) and differentiating it w.r.t. λ we find that the "optimum" values of h_{1} and λ, say \hat{h}_{1} and $\hat{\lambda}$, satisfy

$$
\begin{align*}
& 2 \hat{h}_{1}\left[1-\int_{-\infty}^{\infty}\left\{\Phi^{k-1}(x+\hat{\lambda} \sqrt{2})-\Phi^{k-1}(x-\hat{\lambda} \sqrt{2})\right\} d \Phi(x)\right] \\
= & \hat{\lambda}\left(2 \hat{h}_{1}+\hat{\lambda}\right)(k-1) \varphi(\hat{\lambda}) \int_{-\infty}^{\infty}\left\{\Phi^{k-1}\left(\frac{x+\hat{\lambda}}{\sqrt{2}}\right)-\Phi^{k-1}\left(\frac{x-\lambda}{\sqrt{2}}\right)\right\} d \Phi(x), \tag{3.4}
\end{align*}
$$

and

$$
\begin{equation*}
\Phi_{k-1}\left(\hat{h}_{1}+\hat{\lambda} ;\{1 / 2\}\right)=\left(1+P^{*}\right) / 2=\hat{\beta}_{1}=\hat{\beta}_{2}, \tag{3.5}
\end{equation*}
$$

where $\varphi(\cdot)$ denotes the standard normal p.d.f. In Table 3.1 we give the values of constants ($\hat{\lambda}, \hat{h}_{1}, \hat{\beta}_{2}$) for selected values of k and P^{*}.

TABLE 3.1. VALUES OF ($\hat{\lambda}, \hat{h}_{1}, \hat{\beta}_{1}, \hat{\beta}_{2}$) FOR SELECTED
VALUES OF k AND P^{*}

k	P^{*}	$\hat{\lambda}$	\hat{h}_{1}	$\hat{\beta}_{1}=\hat{\beta_{2}}$
2	0.99	2.57806	0	0.995
	0.95	1.96231	0	0.975
	0.90	1.64692	0	0.950
3	0.99	1.05983	1.73444	0.995
	0.95	1.02113	1.19101	0.975
	0.90	0.99112	0.92521	0.950
4	0.99	0.95636	1.95864	0.995
	0.95	0.92951	1.41947	0.975
	0.90	0.90956	1.15252	0.950
5				
	0.95	0.90881	1.53297	0.975
	0.90	0.89180	1.26853	0.950
10	0.99	0.96788	2.25107	0.995
	0.95	0.94726	1.73897	0.975
	0.90	0.93301	1.48401	0.950
25	0.99	1.09494	2.37042	0.995
	0.95	1.07451	1.87843	0.975
	0.90	1.06084	1.63316	0.950

For $k=2, \hat{h}_{1}=0$ implies R_{3} reduces to a two-stage procedure. The entries in the table are correct to 4 decimal places.

Since $F_{k\left(n_{1}-1\right), k-1}\left(\hat{h}_{1}+\hat{\lambda} ;\{1 / 2\}\right)<\Phi_{k-1}\left(\hat{h}_{1}+\hat{\lambda} ;\{1 / 2\}\right)=\hat{\beta}_{1}$ for $k\left(n_{1}-1\right)<\infty$, for implementation purposes we must adjust \hat{h}_{1} and $\hat{\lambda}$ to some new values,
say \hat{h}_{1}^{\prime} and $\hat{\lambda}^{\prime}$, such that $F_{k\left(n_{1}-1\right), k-1}\left(h_{1}^{\prime}+\hat{\lambda}^{\prime} ;\{1 / 2\}\right)=\hat{\beta}_{1}$ and hence $\hat{h}_{\mathbf{1}}^{\prime}+\hat{\lambda}^{\prime}>$ $\hat{h}_{1}+\hat{\lambda}$. Given $\hat{h}_{1}^{\prime}+\hat{\lambda}^{\prime}$, which can be found from Krishniah and Armitage (1966) or Gupta and Sobel (1957) for selected values of k, d.f. $=k\left(n_{1}-1\right)$, and $\hat{\beta}_{1}$, we suggest that \hat{h}_{1}^{\prime} and $\hat{\lambda}^{\prime}$ be chosen so that $\hat{h}_{1}^{\prime} / \hat{\lambda}^{\prime}=\hat{h}_{1} / \hat{\lambda}$.

4. Monte-carlo sampling results

If R_{2} and R_{3} are both designed to guarantee (1.1) then to compare their performances we define the relative efficiency (RE) of R_{2} w.r.t. R_{3} by taking the ratio of their expected total sample sizes as follows

$$
\begin{equation*}
\mathrm{RE}_{\mu, \sigma}\left(\delta^{*}, P^{*}, k \mid n_{0}, n_{1}, \lambda, h_{1}, \beta_{2} ; R_{2} / R_{3}\right)=\frac{E_{\mu, \sigma}\left(N \mid R_{3}\right)}{E_{\mu, \sigma(}\left(N \mid R_{2}\right)} \tag{4.1}
\end{equation*}
$$

where $n_{0}=$ the first stage sample size for R_{2}. An expression for the expected total sample size associated with $R_{2}, E_{\mu, \sigma}\left(N \mid R_{2}\right)$, was given by Bechhofer et al. (1954). Note that $E_{\mu, \sigma}\left(N \mid R_{2}\right)$ does not depend on μ.

Due to the complicated nature of the expressions for $E_{\mu, \sigma}\left(N \mid R_{2}\right)$ and $E_{\mu, \sigma}\left(N \mid R_{3}\right)$, a direct analytical comparison between R_{2} and R_{3} appears to be difficult. Therefore our comparison is based on the results of MC simulations. In these simulation experiments we were particularly interested in studying (1) the performance of R_{3} relative to R_{2} in terms of the RE-values at the EM- and LF-configurations for selected values of $\delta^{*}, P^{*}, k, \sigma^{2}$ and $n_{0}=n_{1}$, and (2) the extent of overprotection in terms of excess $P(\mathrm{CS})$ over guaranteed P^{*} afforded by R_{3} when the μ_{i} are in the LF-configuration.

The MC experiments were performed for $k=5,10$, and 25 and $P^{*}=0 \cdot 90$ and 0.95 ; the value of δ^{*} was kept fixed throughout at 0.5 . For each (k, P^{*})combination we considered $\sigma^{2}=1$ and 5 . The first stage sample sizes for R_{2} and R_{3} were chosen to obtain a reasonably large (at least 20 to 30) number of d.f. for the estimation of $\boldsymbol{\sigma}^{2}$. Same values of $\overline{\boldsymbol{X}}_{i}^{(l)}(1 \leqslant i \leqslant k)$ and S_{l}^{2} were used for simulating the l-th stage ($l=1,2$) of both R_{2} and R_{3}; the purpose being to eliminate the difference in the performances of R_{2} and R_{3} on this account. The values of $\bar{X}_{i}^{(l)}$ and S_{l}^{2} were obtained by generating standard normal and chi-square random variables (r.v.'s) by usual techniques. For each run 1000 experiments were conducted. The results of the simulation studies are given in Table 4.1. A summary comparison of R_{2} and R_{3} in terms of the MC estimates of the RE-values at the LF- and EM-configurations is given in Table 4,2.
TABLE 4.1. MONTE CARLO ESTIMATES FOR R_{2} AND \boldsymbol{R}_{3} $\left(P^{*}=0.90\right)$

k			$\hat{h}_{1}{ }^{\prime}$	$\hat{\lambda}^{\prime}$	prob. of correct selection		total sample size			subset size	
					$P_{\text {LF, } \boldsymbol{O}}\left(\mathrm{CS} \mid R_{2}\right)$	$P_{\text {LF, },}\left(\mathrm{CS} \mid R_{3}\right)$	$E_{\mu, \sigma}\left(N \mid R_{2}\right)$	$E_{\text {LF }, \boldsymbol{(})}\left(N \mid R_{3}\right)$	$E_{\text {EM, },}\left(N \mid R_{3}\right)$	$\overline{\left.E_{\text {LF, },(T .} \mid R_{3}\right)}$	$E_{\text {EM, },(T \mid}\left(R_{3}\right)$
5	7	1.0	1.32118	0.92882	20.912	0.924	146.93	112.79	139.47	1.715	2.812
					(.0090)	(.0084)	(1.12)	(1.35)	(1.49)	(.049)	(.047)
5	7	5.0	1.32118	0.92882	0.900	0.919	717.81	561.61	678.11	1.820	
					(.0095)	(.0095)	(6.04)	(5.99)	(6.02)	(.048)	(.047)
10	4	1.0	1.55952	0.98048	0.908	0.921	385.60	267.61	321.61	2.504	4.542
					(.0091)	(.0085)	(2.99)	(2.30)	(2.42)	(.069)	(.069)
10	4	5.0	1.55952	0.98048	0.894	0.909	1928.6	1334.8	1591.3	2.593	4.614
					8 (.0097)	(.0091)	(16.0)	(11.3)	(11.9)	(.071)	(.073)
25	5	1.0	1.65893	1.07757	0.889	0.913	1181.9	750.06	880.43	5.235	8.850
					(.0099)	(.0089)	(5.19)	(5.37)	(5.48)	(.133)	(.134)
25	5	5.0	1.65893	1.07757	70.902	0.909	5898.6	3668.7	4336.5	5.016	8.794
					(.0094)	(.0091)		(25.0)	(27.3)	(.127)	(.135)

The numbers in round brackets are standard errors.
TABLE 4.1. (Gontd.) MONTE CARLO ESTIMATES FOR R_{2} AND R_{3}

		σ^{2}	$\hat{h}_{1}{ }^{\prime}$	$\hat{\lambda}^{\prime}$	prob. of correct selection		total sample size			subset size	
					$\overline{P_{\mathrm{LF}, \boldsymbol{r}}\left(\mathrm{CS} \mid R_{2}\right)}$	$P_{\text {LF }, \sigma}\left(\mathrm{CS} \mid R_{3}\right)$	$\overline{E_{\mu, \sigma}\left(N \mid R_{2}\right)}$	$\left.E_{\text {LF, },(N \mid} R_{3}\right)$	$E_{E M, \sigma}\left(N \mid R_{3}\right)$	$\overline{E_{\text {LF }, \sigma}\left(T \mid R_{3}\right)}$	$E_{E M, \sigma}\left(T \mid R_{3}\right)$
5	7	1.0	1.61974	0.96026	0.944	0.961	205.19	146.17	185.25	1.401	2.862
					(.0073)	(.0061)	(1.62)	(1.53)	(1.65)	(.047)	(.045)
5	7	5.0	1.61974	0.96026	0.951	0.959	1003.9	716.84	904.16	1.386	2.905
						(.0063)		(6.88)	(7.04)	(.046)	(.047)
10	4	1.0	1.84499	1.00501	0.955	0.962	522.96	343.98	420.61	2.110	4.782
10	4	5.0	1.84499	1.00501	0.945	0.953	2592.2	1682.1	2064.3	2.023	4.697
						(.0067)					
25	5	1.0	1.91618	1.09610	0.951	0.949	1512.2	931.4	1115.9	4.546	9.237
						(.0070)				(.126)	(.138)
25	5	5.0	1.91618	1.09610	0.951	0.961	7515.0	4582.4	5497.1	4.430	9.064
					(.0068)	(.0061)	(34.2)	(28.2)	(31.0)	(.122)	(.135)

The numbers in round brackets are standard errors.

An examination of Table 4.2 reveals that for all the cases considered, the performance of R_{3} is consistently better than that of R_{2} even in the "worst" possible parameter configuration of equal means. For fixed P^{*} and σ^{2}, relative performance of R_{3} improves with k. This is due to the fact that the screening aspect of R_{3} becomes more effective for larger k which is also evident from the values of the expected retained subset sizes given in Table 4.1. In practice, the μ_{i} 's would be spread somewhat further apart and therefore even greater savings would result by using R_{3} than those indicated by the REvalues in the LF- and EM-configurations. We also note that the choice of design constants ($\hat{\lambda}^{\prime}, \hat{h}^{\prime}, \hat{\beta_{2}}$) which is determined without the knowledge of σ^{2} appears to work well for a range of σ^{2}-values. Finally we note that R_{3} provides a greater overprotection in terms $P(\mathrm{CS})$ whereas R_{2} does not provide any appreciable overprotection. This conservative nature of R_{3} is due to the Bonferroni inequality used in determining the conditions to be satisfied by ($\lambda, h_{1}, \beta_{2}$) for guaranteeing (1.1) (see the proof of Proposition 2.1).

> TABLE 4.2. ESTIMATED VALUES OF THE RELATIVE EFFICIENCY OF R_{2} w.r.t. R_{3}

k	P^{*}	σ^{2}	$\mathrm{RE}_{\text {LF, }}$	REEM, σ
5	0.90	1.0	0.768	0.949
		5.0	0.782	0.945
5	0.95	1.0	0.713	0.903
		5.0	0.714	0.900
10	0.90	1.0	0.694	0.834
		5.0	0.692	0.825
10	0.95	1.0	0.658	0.804
		5.0	0.649	0.796
25	0.90	1.0	0.635	0.745
		5.0	0.622	0.735
25	0.95	1.0	0.616	0.738
		5.0	0.610	0.731

Acknowledgements

The author is very grateful to Professor R. E. Bechhofer, Cornell University from whose guidance and advice he has immensely benefitted. The author also wishes to thank Mr. Joseph Voelkel, Northwestern University who helped in computing the tables given in the paper.

Appendix

Proof of proposition 2.1: Denote by $\overline{\mathbf{X}}_{(i)}^{())}=$the cumulative sample mean up to the l-th stage from the population having the mean $\mu_{[i j}(1 \leqslant i \leqslant k$; $l=2,3)$ and $\delta_{i j}=\mu_{[i]}-\mu_{[j]}(1 \leqslant i, j \leqslant k)$. We have

$$
\begin{align*}
& 1-P_{\mu, \sigma}\left(\mathrm{CS} \mid R_{3}\right) \\
& \leqslant P_{\mu, \sigma}\left\{\overline{\boldsymbol{X}}_{(k)}^{(2)}<X_{(i)}^{(2)}-\lambda S_{1}\left(2 / N_{2}\right)^{1 / 2} \text { for some } i \neq k\right\} \\
& +P_{\mu, \sigma}\left\{\bar{X}_{(k)}^{(3)}<\overline{\mathbf{X}}_{(i)}^{(3)} \text { for some } i \neq k\right\} \\
& =2-P_{\mu, \sigma}\left\{T_{i}^{(2)} \leqslant\left(\delta_{k i} / S_{1}\right)\left(N_{2} / 2\right)^{1 / 2}+\lambda \forall i \neq k\right\} \\
& -P_{\mu, \sigma}\left\{T_{i}^{(8)} \leqslant\left(\delta_{k i} / S_{2}\right)\left(N_{3} / 2\right)^{1 / 2} \forall i \neq k\right\} \\
& \leqslant 2-P_{\mu, \sigma}\left\{T_{i}^{(2)} \leqslant\left(\delta^{*} / S_{1}\right)\left(N_{2} / 2\right)^{1 / 2}+\lambda \forall i \neq k\right\} \\
& -P_{\mu, \sigma}\left\{T_{i}^{(3)} \leqslant\left(\delta^{*} / S_{1}\right)\left(N_{3} / 2\right)^{1 / 2} \forall i \neq k\right\} \\
& =2-P_{1}-P_{2} \text { (say), } \tag{A.1}
\end{align*}
$$

whenever $\delta_{k}, k_{-1} \geqslant \delta^{*}$. $\left.\operatorname{In}(\mathrm{A}: 1) T_{i}^{(l)}=\left\{\overline{\boldsymbol{X}}_{(i)}^{(l)}-\overline{\mathbf{X}}_{(k)}^{(l)}+\delta_{k i}\right) \sqrt{\bar{N}_{l}}\right\} / S_{l-1} \sqrt{2} \quad(1 \leqslant i$ $\leqslant k-1 ; l=2,3$). It is straightforward to check that ($\left.T_{1}^{(2)}, \ldots, T_{k-1}^{(2)}\right)$ and $\left(T_{1}^{(3)}, \ldots, T_{k-1}^{(3)}\right)$ each have a $(k-1)$-variate central t-distribution with equal correlation $=1 / 2$; the former has $k\left(n_{1}-1\right)$ d.f. and the latter has $k\left(N_{2}-1\right)$ d.f. (random) associated with it. Now from (2.1) we have $h_{1} \leqslant\left(\delta^{*} / S_{1}\right)\left(N_{2} / 2\right)^{1 / 2}$ and therefore $P_{1} \geqslant F_{k\left(n_{1}-1\right), k-1}\left(h_{1}+\lambda ;\{1 / 2\}\right)=\beta_{1}$. Next conditioning on $N_{2}=n_{2}$ and from (2.2) noting that $h_{2}\left(n_{2}\right) \leqslant\left(\delta^{*} / S_{2}\right)\left(N_{3} / 2\right)^{1 / 2}$ we have $P_{2} \geqslant E\left\{F_{k\left(N_{2}-1\right), k-1}\right.$ $\left.\left(h_{2}\left(N_{2}\right) ;\{1 / 2\}\right) \mid N_{2}=n_{2}\right\}=\beta_{2}$. Substituting in (A:1) and using (2.5) we obtain $P_{\mu, \sigma}\left(\mathrm{CS} \mid R_{3}\right) \geqslant P^{*}$ whenever $\delta_{k}, k_{-1} \geqslant \delta^{*}$.

References

Alam, K. (1970) : A two-sample procedure for selecting the population with the largest mean from k normal populations. Ann. Inst. Statist. Math., 22, 127-136.
\rightarrow Bechhofer, R. E., Dunnett, C. W., and Sabel, M. (1954) : A two-sample multiple decision rulo for ranking means of normal populations with a common unknown variance. Biometrika, 41, 170-176.
Dúdewicz, E. J. (1971) : Nonexistence of a single-sample selection procedure whose $P(C S)$ is independent of the variances. South African Statist. J., 5, 37-39.
\rightarrow Gupta, S. S. (1965) : On some multiple decision (selection and ranking) rules. J'echnomelrics, 7, 225-245.
\rightarrow Gupta, S. S., and Sobel, M. (1957) : On a statistic which arises in selection and ranking problems. Ann. Math. Statist., 28, 957-967.
Krishniaf, P. R., and Armitage, J. V. (1966) : Tables for multivariate t-distribution. Sankhyā, Ser. B, 28, 31-56.
\rightarrow Paulson, E. (1964) : A sequential procedure for selecting the population with the largest mean from k normal populations. Ann. Math. Statist., 35, 174-180.
Tamhane, A. C. (1975) : On minimax multistage elimination type rules for selecting the largest normal mean. Tech. Rep. No. 259, Dept. of Operations Research, Cornell University, Ithaca, N.Y.
Tamhane, A. C., and Becheofer, R. E. (1977) : A two-stage minimax procedure with screening for selecting the largest normal means. To appear in Commun. Statist., Ser. A. (Special Issue on Ranking and Selection).

Paper received: June, 1976.
Revised: December, 1976.

[^0]: * This work was partially supported by the Army Research Office-Durham and the Office of Naval Research at Cornell University.

